Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Br J Haematol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613149

RESUMO

Splenectomised ß-thalassaemia/haemoglobin E (HbE) patients have increased levels of circulating microparticles or medium extra-cellular vesicles (mEVs). The splenectomised mEVs play important roles in thromboembolic complications in patients since they can induce platelet activation and endothelial cell dysfunction. However, a comprehensive understanding of the mechanism of mEV generation in thalassaemia disease has still not been reached. Thalassaemic mEVs are hypothesised to be generated from cellular oxidative stress in red blood cells (RBCs) and platelets. Therefore, a proteomic analysis of mEVs from splenectomised and non-splenectomised ß-thalassaemia/HbE patients was performed by liquid chromatography with tandem mass spectrometry. A total of 171 proteins were identified among mEVs. Interestingly, 72 proteins were uniquely found in splenectomised mEVs including immunoglobulin subunits and cytoskeleton proteins. Immunoglobulin G (IgG)-bearing mEVs in splenectomised patients were significantly increased. Furthermore, complement C1q was detected in both mEVs with IgG binding and mEVs without IgG binding. Interestingly, the percentage of mEVs generated from RBCs with IgG binding was approximately 15-20 times higher than the percentage of RBCs binding with IgG. This suggested that the vesiculation of thalassaemia mEVs could be a mechanism of RBCs to eliminate membrane patches harbouring immune complex and may consequently prevent cells from phagocytosis and lysis.

2.
Biomed Rep ; 20(2): 31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38259586

RESUMO

Thromboembolic events are a significant clinical concern in thalassemia and hemoglobinopathies, highlighting the need for new strategies to treat and detect these specific hematologic complications. In recent years, extracellular vesicles (EVs) have garnered interest due to their role in cell-to-cell communication, including angiogenesis, immune responses and coagulation activation. Their multifaceted role depends on the cellular origin and cargo, making them potential diagnostic biomarkers and therapeutic agents. The present review highlights recent advances in understanding the involvement of EVs in hypercoagulability in thalassemia, the characterization of circulating EVs and the potential for using EVs as predictive biomarkers. ß-Thalassemia intermedia exhibits a high incidence of thromboembolic events, contributing to significant morbidity and mortality. Advanced technologies have enabled the profiling and characterization of circulating EVs in patients with ß-thalassemia through various techniques, including flow cytometry, proteomic studies, reverse transcription-quantitative PCR, transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. Microparticles from splenectomized ß-thalassemia/hemoglobin E patients induce platelet activation and aggregation, potentially contributing to thrombus formation. The abundance of these microparticles, primarily released from platelets and damaged red cells, may have a role in thromboembolic events and other clinical complications in thalassemia. This suggests a promising future for EVs as diagnostic and predictive biomarkers in thalassemia management.

3.
Oncology ; 102(1): 53-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37573780

RESUMO

INTRODUCTION: Cervical cancer (CC) is the fourth most common cancer type and a leading cause of cancer-related deaths in women worldwide. Its underlying molecular mechanisms are unclear. Cancer cell-derived extracellular vesicles (EVs) are involved in cancer development and progression by delivering regulatory factors, including microRNAs and long non-coding RNAs (lncRNAs). METHODS: Here, we identified the EV lncRNA expression profiles associated with different developmental stages of CC using next-generation sequencing. EVs from the serum of patients with stages I-III CC and healthy donors were characterized using EV marker immunoblotting and transmission electron microscopy. RESULTS: The EV concentration increases with progression of the disease. Most particles had a 100-250-nm diameter, and their sizes were similar in all groups. We identified many lncRNAs that were uniquely and differentially expressed (DE) in patients with different stages of CC. The pathway analysis results indicated that the upregulated DE EV lncRNAs abundant in stages I and II were associated with cell proliferation and inflammation and cancer progression pathways, respectively. LINC00941, LINC01910, LINC02454, and DSG2-AS1 were highly expressed, suggesting poor overall survival of CC patients. Interestingly, DSG2-AS1 was associated with the human papillomavirus infection pathway through AKT3, DLG1, and COL6A2 genes. CONCLUSION: This is the first study that reports the levels of EVs and their lncRNA contents change during cancer development, demonstrating the existence of a unique vesicle-mediated cell-to-cell communication network underlying cancer progression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , MicroRNAs/genética
4.
Curr Res Toxicol ; 5: 100134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964944

RESUMO

Late-onset cardiomyopathy is becoming more common among cancer survivors, particularly those who received doxorubicin (DOXO) treatment. However, few clinically available cardiac biomarkers can predict an unfavorable cardiac outcome before cell death. Extracellular vesicles (EVs) are emerging as biomarkers for cardiovascular diseases and others. This study aimed to measure dynamic 4-hydroxynonenal (4HNE)-adducted protein levels in rats treated chronically with DOXO and examine their link with oxidative stress, antioxidant gene expression in cardiac tissues, and cardiac function. Twenty-two male Wistar rats were randomly assigned to receive intraperitoneal injection of normal saline (n = 8) or DOXO (3 mg/kg, 6 doses, n = 14). Before and after therapy, serum EVs and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were determined. Tunable resistive pulse sensing was used to measure EV size and concentration. ELISA was used to assess 4HNE-adducted protein in EVs and cardiac tissues. Differential-display reverse transcription-PCR was used to quantitate cardiac Cat and Gpx1 gene expression. Potential correlations between 4HNE-adducted protein levels in EVs, cardiac oxidative stress, antioxidant gene expression, and cardiac function were determined. DOXO-treated rats showed more serum EV 4HNE-adducted protein than NSS-treated rats at day 9 and later endpoints, whereas NT-proBNP levels were not different between groups. Moreover, on day 9, surviving rats' EVs had higher levels of 4HNE-adducted protein, and these correlated positively with concentrations of heart tissue 4HNE adduction and copy numbers of Cat and Gpx1, while at endpoint correlated negatively with cardiac functions. Therefore, 4HNE-adducted protein in serum EVs could be an early, minimally invasive biomarker of the oxidative response and cardiac function in DOXO-induced cardiomyopathy.

5.
Clin Cardiol ; 46(11): 1326-1336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37503820

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia. Diabetes mellitus (DM) is one of the risk factors for the development of stroke and thromboembolism in patients with AF. Early identification may reduce the incidence of complications and mortality in AF patients. HYPOTHESIS: AF patients with DM have different pattern of small extracellular vesicle (sEV) levels and sEV-derived microRNA (miRNA) expression compared with those without DM. METHODS: We compared sEV levels and sEV-miRNA expression in plasma from AF patients with and without DM using nanoparticle tracking analysis and droplet digital polymerase chain reaction, respectively. RESULTS: We observed a significant increase in total sEV levels (p = .004) and a significant decrease in sEV-miR-126 level (p = .004) in AF patients with DM. Multivariate logistic regression analysis revealed a positive association between total sEV levels and AF with DM (p = .019), and a negative association between sEV-miR-126 level and AF with DM (p = .031). The combination of clinical data, total sEVs, and sEV-miR-126 level had an area under the curve of 0.968 (p < .0001) for discriminating AF with DM, which was shown to be significantly better than clinical data analysis alone (p = .0368). CONCLUSIONS: These results suggest that an increased level of total sEV and a decreased sEV-miR-126 level may play a potential role in the pathophysiology and complications of AF with DM, especially endothelial dysfunction, and can be considered as an applied biomarker for distinguishing between AF with and without DM.


Assuntos
Fibrilação Atrial , Diabetes Mellitus , MicroRNAs , Acidente Vascular Cerebral , Humanos , Fibrilação Atrial/complicações , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Fatores de Risco
6.
PLoS Pathog ; 19(3): e1011209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36897929

RESUMO

CD4+ tissue resident memory T cells (TRMs) are implicated in the formation of persistent HIV reservoirs that are established during the very early stages of infection. The tissue-specific factors that direct T cells to establish tissue residency are not well defined, nor are the factors that establish viral latency. We report that costimulation via MAdCAM-1 and retinoic acid (RA), two constituents of gut tissues, together with TGF-ß, promote the differentiation of CD4+ T cells into a distinct subset α4ß7+CD69+CD103+ TRM-like cells. Among the costimulatory ligands we evaluated, MAdCAM-1 was unique in its capacity to upregulate both CCR5 and CCR9. MAdCAM-1 costimulation rendered cells susceptible to HIV infection. Differentiation of TRM-like cells was reduced by MAdCAM-1 antagonists developed to treat inflammatory bowel diseases. These finding provide a framework to better understand the contribution of CD4+ TRMs to persistent viral reservoirs and HIV pathogenesis.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Humanos , Fator de Crescimento Transformador beta , Tretinoína/farmacologia , Diferenciação Celular , Memória Imunológica , Receptores CCR5
7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768950

RESUMO

Malaria is a life-threatening tropical arthropod-borne disease caused by Plasmodium spp. Monocytes are the primary immune cells to eliminate malaria-infected red blood cells. Thus, the monocyte's functions are one of the crucial factors in controlling parasite growth. It is reasoned that the activation or modulation of monocyte function by parasite products might dictate the rate of disease progression. Extracellular vesicles (EVs), microvesicles, and exosomes, released from infected red blood cells, mediate intercellular communication and control the recipient cell function. This study aimed to investigate the physical characteristics of EVs derived from culture-adapted P. falciparum isolates (Pf-EVs) from different clinical malaria outcomes and their impact on monocyte polarization. The results showed that all P. falciparum strains released similar amounts of EVs with some variation in size characteristics. The effect of Pf-EV stimulation on M1/M2 monocyte polarization revealed a more pronounced effect on CD14+CD16+ intermediate monocytes than the CD14+CD16- classical monocytes with a marked induction of Pf-EVs from a severe malaria strain. However, no difference in the levels of microRNAs (miR), miR-451a, miR-486, and miR-92a among Pf-EVs derived from virulent and nonvirulent strains was found, suggesting that miR in Pf-EVs might not be a significant factor in driving M2-like monocyte polarization. Future studies on other biomolecules in Pf-EVs derived from the P. falciparum strain with high virulence that induce M2-like polarization are therefore recommended.


Assuntos
Vesículas Extracelulares , Malária Falciparum , Malária , MicroRNAs , Humanos , Monócitos , Plasmodium falciparum , Eritrócitos/parasitologia
8.
Br J Haematol ; 200(3): 367-376, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36221231

RESUMO

Hydroxyurea (HU) (hydroxycarbamide) is used as a therapeutic option in ß-thalassaemia to increase fetal haemoglobin, which results in a reduced requirement for blood transfusion. However, a potential serious adverse effect of HU is neutropenia. Abnormal neutrophil maturation and function in ß-thalassaemia/HbE patients are well documented. This raises questions about the effect of the drug with regards to the immune response these patients. This study investigated the effects of HU treatment on both innate and adaptive immunity in a cross-sectional study of 28 ß-thalassaemia/HbE patients who had received HU treatment (BE+HU) as compared with 22 ß-thalassaemia/HbE patients who had not received HU (BE-HU) and 26 normal subjects. The expression of PU.1 and C/EBPß, transcription factors, which are associated with neutrophil maturation, was significantly reduced in BE+HU patients as compared with BE-HU patients and normal subjects. Interestingly, C3bR expression on neutrophils and their oxidative burst activity in BE+HU were restored to close to normal levels when compared with BE-HU. There was no observed effect of HU on monocytes, myeloid derived suppressor cells (both granulocytic and monocytic subsets), CD4+ T cells, CD8+ T cells, complement levels and serum immunoglobulin levels in this study. The full immunophenotyping analysis in this study indicates that HU therapy in ß-thalassaemia/HbE patients does not significantly compromise the immune response.


Assuntos
Hidroxiureia , Talassemia beta , Humanos , Hidroxiureia/efeitos adversos , Linfócitos T CD8-Positivos , Estudos Transversais , Imunofenotipagem , Imunidade
10.
J Extracell Vesicles ; 11(12): e12291, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36468940

RESUMO

The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2 ), ß-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived ß-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , Inativação de Vírus , Vesículas Extracelulares/química , Pulmão , Células Epiteliais/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362245

RESUMO

Doxorubicin (DOXO)-induced cardiomyopathy (DIC) is a lethal complication in cancer patients. Major mechanisms of DIC involve oxidative stress in cardiomyocytes and hyperactivated immune response. Extracellular vesicles (EVs) mediate cell-cell communication during oxidative stress. However, functions of circulating EVs released after chronic DOXO exposure on cardiomyocytes and immune cells are still obscured. Herein, we developed a DIC in vivo model using male Wistar rats injected with 3 mg/kg DOXO for 6 doses within 30 days (18 mg/kg cumulative dose). One month after the last injection, the rats developed cardiotoxicity evidenced by increased BCL2-associated X protein and cleaved caspase-3 in heart tissues, along with N-terminal pro B-type natriuretic peptide in sera. Serum EVs were isolated by size exclusion chromatography. EV functions on H9c2 cardiomyocytes and NR8383 macrophages were evaluated. EVs from DOXO-treated rats (DOXO_EVs) attenuated ROS production via increased glutathione peroxidase-1 and catalase gene expression, and reduced hydrogen peroxide-induced cell death in cardiomyocytes. In contrast, DOXO_EVs induced ROS production, interleukin-6, and tumor necrosis factor-alpha, while suppressing arginase-1 gene expression in macrophages. These results suggested the pleiotropic roles of EVs against DIC, which highlight the potential role of EV-based therapy for DIC with a concern of its adverse effect on immune response.


Assuntos
Cardiomiopatias , Vesículas Extracelulares , Ratos , Masculino , Animais , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar , Doxorrubicina/farmacologia , Estresse Oxidativo , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Expressão Gênica
12.
Front Cell Infect Microbiol ; 12: 941939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967844

RESUMO

Lymphostatin is a virulence factor of enteropathogenic E. coli (EPEC) and non-O157 serogroup enterohaemorrhagic E. coli. Previous studies using whole-cell lysates of EPEC showed that lymphostatin inhibits the mitogen-activated proliferation of bulk human peripheral blood mononuclear cells (PBMCs) and the production of cytokines IL-2, IL-4, IL-5, and IFN-γ. Here, we used highly purified lymphostatin and PBMC-derived T cells to show that lymphostatin inhibits anti-CD3/anti-CD28-activated proliferation of human CD4+ and CD8+ T cells and blocks the synthesis of IL-2, IL-4, IL-10 and IFN-γ without affecting cell viability and in a manner dependent on an N-terminal DTD glycosyltransferase motif. Such inhibition was not observed with T cells activated by phorbol 12-myristate 13-acetate and ionomycin, implying that lymphostatin targets T cell receptor signaling. Analysis of the expression of CD69 indicated that lymphostatin suppresses T cell activation at an early stage and no impacts on apoptosis or necrosis were observed. Flow cytometric analysis of the DNA content of lymphostatin-treated CD4+ and CD8+ T cells showed a concentration- and DTD-dependent accumulation of the cells in the G0/G1 phase of the cell cycle, and corresponding reduction of the percentage of cells in S phase. Consistent with this, we found a marked reduction in the abundance of cyclins D3, E and A and loss of phosphorylated Rb over time in activated T cells from 8 donors treated with lymphostatin. Moreover, the cyclin-dependent kinase (cdk) inhibitor p27kip1, which inhibits progression of the cell cycle at G1 by acting on cyclin E-cdk2 or cyclin D-cdk4 complexes, was found to be accumulated in lymphostatin-treated T cells. Analysis of the abundance of phosphorylated kinases involved in signal transduction found that 30 of 39 were reduced in abundance following lymphostatin treatment of T cells from 5 donors, albeit not significantly so. Our data provide novel insights into the mode of action of lymphostatin on human T lymphocytes.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Linfócitos T , Apoptose , Toxinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Pontos de Checagem do Ciclo Celular/imunologia , Divisão Celular , Proliferação de Células/fisiologia , Citocinas/biossíntese , Citocinas/imunologia , Escherichia coli Enteropatogênica/imunologia , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Humanos , Interleucina-2 , Interleucina-4 , Leucócitos Mononucleares/imunologia , Necrose , Linfócitos T/imunologia , Fatores de Virulência/imunologia
13.
J Clin Med ; 11(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35888014

RESUMO

In infectious diseases, extracellular vesicles (EVs) released from a pathogen or pathogen-infected cells can transfer pathogen-derived biomolecules, especially proteins, to target cells and consequently regulate these target cells. For example, malaria is an important tropical infectious disease caused by Plasmodium spp. Previous studies have identified the roles of Plasmodium falciparum-infected red blood cell-derived EVs (Pf-EVs) in the pathogenesis, activation, and modulation of host immune responses. This study investigated the proteomic profiles of Pf-EVs isolated from four P. falciparum strains. We also compared the proteomes of EVs from (i) different EV types (microvesicles and exosomes) and (ii) different parasite growth stages (early- and late-stage). The proteomic analyses revealed that the human proteins carried in the Pf-EVs were specific to the type of Pf-EVs. By contrast, most of the P. falciparum proteins carried in Pf-EVs were common across all types of Pf-EVs. As the proteomics results revealed that Pf-EVs contained invasion-associated proteins, the effect of Pf-EVs on parasite invasion was also investigated. Surprisingly, the attenuation of parasite invasion efficiency was found with the addition of Pf-MVs. Moreover, this effect was markedly increased in culture-adapted isolates compared with laboratory reference strains. Our evidence supports the concept that Pf-EVs play a role in quorum sensing, which leads to parasite growth-density regulation.

14.
Pathogens ; 11(6)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35745486

RESUMO

Extracellular vesicles (EVs) released from pathogenic protozoans play crucial roles in host-parasite communication and disease pathogenesis. Naegleria fowleri is a free-living protozoan causing primary amoebic meningoencephalitis, a fatal disease in the central nervous system. This study aims to explore the roles of N. fowleri-derived EVs (Nf-EVs) in host-pathogen interactions using the THP-1 cell line as a model. The Nf-EVs were isolated from the N. fowleri trophozoite culture supernatant using sequential centrifugation and characterized by nanoparticle tracking analysis and transmission electron microscopy. The functional roles of Nf-EVs in the apoptosis and immune response induction of THP-1 monocytes and macrophages were examined by flow cytometry, quantitative PCR, and ELISA. Results showed that Nf-EVs displayed vesicles with bilayer membrane structure approximately 130-170 nm in diameter. The Nf-EVs can be internalized by macrophages and induce macrophage responses by induction of the expression of costimulatory molecules CD80, CD86, HLA-DR, and CD169 and the production of cytokine IL-8. However, Nf-EVs did not affect the apoptosis of macrophages. These findings illustrate the potential role of Nf-EVs in mediating the host immune cell activation and disease pathogenesis.

15.
Cancers (Basel) ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35681607

RESUMO

MYCN amplification is the strongest predictor of high-risk neuroblastoma (NB). The standard procedure to detect MYCN status requires invasive procedures. Extracellular vesicles (EVs) contain molecular signatures of originated cells, present in biofluids, and serve as an invaluable source for cancer liquid biopsies. This study aimed to establish an EV-based method to detect the MYCN status of NB. Two EV subtypes, i.e., microvesicles (MVs) and exosomes, were sequentially isolated from the culture supernatant by step-wise centrifugation, ultrafiltration, and size-exclusion chromatography. Quantitative RT-PCR was performed to detect MYCN mRNA. As a result, MYCN mRNA was detectable in the MVs, but not exosomes, of MYCN-amplified NB cells. MYCN mRNA-containing MVs (MYCN-MV) were successfully detected in three distinct MYCN-amplified NB cell lines but absent in three MYCN non-amplification cells. The simulated samples were prepared by pulsing MVs into human serum. MYCN-MV detection in the simulated samples showed a less interfering effect from the human blood matrix. Validation using clinical specimens (2 mL bone marrow plasma) obtained from patients at various disease stages showed a promising result. Five out of six specimens of MYCN-amplified patients showed positive results, while there were no false positives in four plasma samples of the MYCN non-amplification group. This study communicated a novel EV-based method for detecting the MYCN status of pediatric NB based on MYCN mRNA contents in MVs. Future studies should be pursued in a prospective cohort to determine its true diagnostic performance.

16.
Nutrients ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565689

RESUMO

This study aimed to develop perilla fruit oil (PFO)-fortified soybean milk (PFO-SM), identify its sensory acceptability, and evaluate its health outcomes. Our PFO-SM product was pasteurized, analyzed for its nutritional value, and had its acceptability assessed by an experienced and trained descriptive panel (n = 100) based on a relevant set of sensory attributes. A randomized clinical trial was conducted involving healthy subjects who were assigned to consume deionized water (DI), SM, PFO-SM, or black sesame-soybean milk (BS-SM) (n = 48 each, 180 mL/serving) daily for 30 d. Accordingly, health indices and analyzed blood biomarkers were recorded. Consequently, 1% PFO-SM (1.26 mg ALA rich) was generally associated with very high scores for overall acceptance, color, flavor, odor, taste, texture, and sweetness. We observed that PFO-SM lowered levels of serum triglycerides and erythrocyte reactive oxygen species, but increased phagocytosis and serum antioxidant activity (p < 0.05) when compared to SM and BS-SM. These findings indicate that PFO supplementation in soybean milk could enhance radical-scavenging and phagocytotic abilities in the blood of healthy persons. In this regard, it was determined to be more efficient than black sesame supplementation. We are now better positioned to recommend the consumption of PFO-SM drink for the reduction of many chronic diseases. Randomized clinical trial registration (Reference number 41389) by IRSCTN Registry.


Assuntos
Perilla , Leite de Soja , Antioxidantes , Suplementos Nutricionais/análise , Alimentos Fortificados , Frutas , Voluntários Saudáveis , Humanos , Perilla/química , Fagocitose , Triglicerídeos
18.
Sci Rep ; 12(1): 1967, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121800

RESUMO

Neutrophil dysfunction contributes to a high susceptibility to severe bacterial infection which is a leading cause of morbidity and mortality in ß-thalassaemia/HbE, especially in splenectomised patients. This study demonstrated another abnormality of neutrophil function, namely neutrophil extracellular trap (NET) formation in splenectomised and non-splenectomised ß-thalassaemia/HbE patients who had iron overload. A classification system of morphological NET formation using confocal microscopy was developed, and samples were categorized into early and late phases which were subdivided into web-like and non-web structures. At baseline, neutrophils from non-splenectomised patients (58 ± 4%) and splenectomised patients (65 ± 3%) had higher early phase NETs than those from normal subjects (33 ± 1%). As a mimic of iron overload and infection, haemin/PMA/LPS treatment led to a significant reduction of early NETs and an increase of late NETs in neutrophils from normal and non-splenectomised patients. Interestingly, neutrophils from splenectomised patients had impaired development of late NETs. This suggests that during infection bacteria might not be trapped and may spread from the site of infection resulting in higher susceptibility to severe bacterial infection in splenectomised patients.


Assuntos
Infecções Bacterianas/genética , Armadilhas Extracelulares/genética , Neutrófilos/microbiologia , Talassemia beta/genética , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Armadilhas Extracelulares/microbiologia , Humanos , Imunidade Inata/genética , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/microbiologia , Sobrecarga de Ferro/patologia , Neutrófilos/patologia , Esplenectomia , Talassemia beta/microbiologia , Talassemia beta/patologia
19.
Diagnostics (Basel) ; 12(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35204474

RESUMO

HIV viral load is more reliable tool for monitoring treatment throughout the course of HIV/AIDS, but the test may be expensive in resource-limited settings. Therefore, enumeration of CD4 T-lymphocyte count remains important in these settings. This study evaluated the performance of BDFACSPresto, a near-patient CD4 counter planned to be used in primary healthcare clinics in Thailand. Results of percent, absolute CD4 count and hemoglobin (Hb) on the FACSPresto were compared with the TriTEST/TruCOUNT/BDFACSCalibur method and a Sysmex hematology analyzer. Phase I of the study was performed in an ISO15189 laboratory. Both percentage and absolute values showed Passing-Bablok slopes within 0.98-1.06 and 0.97-1.13, mean Bland-Altman biases of +1.2% and +20.5 cells/µL, respectively. In phase II, venous and some capillary blood samples were analyzed in four primary healthcare clinics. The results showed good correlation between capillary and venous blood. For venous blood samples, regression lines showed slopes of 1.01-1.05 and 1.01-1.07 for all percentage and absolute values. The overall mean biases were +0.9% and +17.0 cells/µL. For Hb, Passing-Bablok regression result gave slope within 1.01-1.07 and mean bias of -0.06 g/dL. Thus, CD4 enumeration in blood by the FACSPresto is reliable and can be performed to an identical standard at primary healthcare clinics.

20.
Cell Tissue Res ; 388(1): 89-104, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35072793

RESUMO

Peripheral arterial disease (PAD) is caused by atherosclerotic plaque accumulation, which results in ischemia in lower extremity ischemia. Cell-based therapy using endothelial progenitor cells (EPCs) or endothelial cells (ECs) has been challenging due to an insufficient number and replicative senescence of primary cells isolated from patients. To overcome this limitation, we generated induced pluripotent stem cells (iPSCs) from a patient with PAD for the first time. The patient-specific iPSCs have unlimited proliferation and can be used to generate a clinically relevant number of functional ECs. Here we developed a strategy to efficiently generate high EC yields within 5 days of differentiation. The generated iPSC-derived ECs from a PAD patient were phenotypically and functionally similar to the primary blood outgrowth endothelial cells (BOECs) and iPSC-ECs derived from healthy donors as evidenced by expression of EC-specific markers, capillary-like tube-forming potential, and the ability to uptake acetylated low-density lipoprotein (Ac-LDL). Our approach may provide an alternative renewable source of large-scale ECs for regenerative therapy. This study represents the first step toward the development of an autologous cell-based strategy for the treatment of PAD in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença Arterial Periférica , Diferenciação Celular/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/terapia , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA